

Investigation of free-roaming dog contact networks to improve canine infectious disease control programs

Charlotte Warembourg¹, Guillaume Fournié², Monica Berger-González^{3,4}, Danilo Alvarez³, Filipe Maximiano Sousa¹, Ewaldus Wera⁵, Terence Odoch⁶, Grace Alobo⁶, Sonja Hartnack⁷, Salome Dürr¹

¹Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Switzerland, ²Royal Veterinary College, University of London, UK, ³Universidad del Valle, Guatemala city, Guatemala, ⁴Swiss Tropical and Public Health Institute, Basel, Switzerland, ⁵Kupang State Agricultural Polytechnic (Politeknik Pertanian Negeri Kupang), Nusa Tenggara Timur, Indonesia, ⁶College of Veterinary Medicine, Animal Resources and Biosecurity (CoVAB), Makerere University, Kampala, Uganda, ⁷University of Zurich (UZH), Vetsuisse Faculty, Section of Epidemiology, Zurich, Switzerland

INTRODUCTION

Current recommendations to control canine rabies focus on mass vaccination of the **free-roaming domestic dog (FRDD)** population with at least 70% coverage. **Targeting vaccination** on highly connected dogs would improve the efficiency of vaccination programs.

Rabies is transmitted by direct contacts. Therefore, **understanding contact networks** in free roaming dog populations could help identifying dogs likely to play a major role in rabies transmission, and inform targeted vaccination programmes.

Objectives:

- 1. Assess the dog behaviour heterongeneity within a contact network
- 2. Identify factors explaining why some dogs are more connected than others

METHODS

Data collection

- 3 countries: Guatemala, Indonesia and Uganda
- Selection of three 1km² study areas in each country: Urban/Semiurban, Rural 1 and Rural 2
- Collaring with a **contact sensor** all FRDD whose owner's household is located in the areas

Data analysis

Comparing dogs within each network

Degree and betweenness centrality, hierarchical clustering
 Assessing factors associated with network centrality

Betweenness

- Permutation-based linear regression model
- Response variable: degree or betweenness (log transformation)
- Factors: dog's sex, age, body conditioning score (BCS), reason for keeping the dog (shepherd, hunting, watch dog, pet or meat production), free-roaming time (FRT), number of dogs collared in the same household (NDC).

RESULTS

1. Comparison of individual dogs in urban/semi-urban network in Indonesia

18% of dogs have much higher centrality measures (pink and green clusters) than other dogs (blue cluster). Distributions of dog centrality measures are right-skewed in most study areas.

2. Investigation of explanatory factors of highly connected dogs

Degree

Country	Study Area	Explanatory factors										
		Sex	Age	BCS	Shepherd	Hunting	Watch dog	Pet	Meat	FRT	NDC	
Guatemala	Rural 1											
	Rural 2	male		+		-		-			+	
	Urban											
Indonesia	Rural 1										+	
	Rural 2							+				
	Semi-urban			+				-		+	+	
Uganda	Urban		-		-					+	+	

blue: significant positive association; brown: significant negative association; white: no significant association; grey: not investigated in the

model
Two study areas in Uganda are

not presented because of too low

numbers of dogs collared.

Betweenness

Country	Study Area	Explanatory factors											
		Sex	Age	BCS	Shepherd	Hunting	Watch dog	Pet	Meat	FRT	NDC		
Guatemala	Rural 1												
	Rural 2	male											
	Urban												
Indonesia	Rural 1												
	Rural 2								-				
	Semi-urban									+	+		
Uganda	Urban												

None of the investigated dog related factors investigated is consistently significantly associated with dogs' degree and betweenness

DISCUSSION

- Dog's centrality measures are heterogeneous within networks: a small number of dogs mediate most contacts.
- However, none of the tested factors explained centrality in all models and therefore cannot be used to inform canine infectious disease control programs.
- We will investigate the impact of **owner-related and environmental factors** on dog free-roaming behaviour.

Contact: Charlotte Warembourg
Veterinary Public Health Institute, University of Bern
+41 (0)76 217 62 94
charlotte.warembourg@vetsuisse.unibe.ch

Acknowledgment: The University del Valle, Kupang State Agricultural Polytechnic and the College of Veterinary Medicine, Animal