The spread of rabies in Ethiopian wolves: from field data to transmission parameters Aurélie Courcoul^{1,2,3}, Elisabeta Vergu⁴, Jean-Baptiste Denis⁴, Claudio Sillero-Zubiri⁵, Louise Matthews², Daniel Haydon² ### **BACKGROUND** - The Ethiopian wolf: an endangered species threatened by regular outbreaks of rabies - In 2008 2009: nearly half of the animals of the Web Valley died from rabies - · Quantification of the spread of infection: an important step towards effective control planning - · Epidemic process: only partially observed making parameter inference hard - Is Approximate Bayesian Computation a method of interest? #### **OBJECTIVE** To assess rabies transmission in Ethiopian wolves during the 2008-2009 outbreak using Approximate Bayesian Computation (ABC) ## A few words about ABC - · Bypass exact likelihood calculations by matching simulated to observed data - The simplest ABC framework: rejection samplers (Figure 1) · Here: minimally informative priors for β_w and β_h . Summary statistics: number of carcasses per group of packs, duration of outbreak, and time between the first carcass and the first carcass in a neighboring pack. 80,000 simulations, the 100 leading to the smallest distance between observed and simulated summary statistics kept for inference. Algorithm of Beaumont #### et al. (2002) based on Figure 1: schematic representation of ABC rejection for local linear regression. one parameter #### CONCLUSION - ABC seems a useful method to assess infection transmission parameters in wildlife where data are scarce - Besides biological insights following the estimation of rabies transmission parameters in Ethiopian wolves, these outputs will be used to calibrate a simulation model to assess the effectiveness of different vaccination strategies in those populations #### DATA & METHODS #### Field data - pre and post-outbreak pack compositions, date and place of vaccination events and carcass recoveries - ⇒ 72 wolves in 7 packs, 35 carcass recoveries over a 5-month period, 13 animals vaccinated #### Modelling - spatially explicit stochastic SEIR model for infection spread within a metapopulation of 7 - inclusion of natural mortality, vaccination and uncertainty about home packs of carcasses - mean incubation and infectious period fixed to respectively 22 days and 3 days - \Rightarrow Two parameters to infer using ABC: the within (β_w) and between neighboring pack (β_h) transmission rates. Then computation of the basic reproduction number (R_0) of the infection - \Rightarrow Before inferring β_w and β_h from the real data set, check on the method accuracy and robustness using simulated data from known parameter values #### RESULTS #### Check on the method accuracy and robustness \Rightarrow good inference for β_w and β_b (Figure 2). The data set was generated with $\beta_w = 0.04$ and $\beta_b = 0.008$. Figure 2: posterior distributions of β_w and β_b obtained with the ABC procedure (see 'A few words about ABC' for details). The blue stars represents the real parameter values. Priors distributions were uniforms between 0 and 0.1 for β_w and between 0 and $\beta_w/2$ for β_h . #### Assessment of rabies transmission during the 2008-2009 outbreak - Median β_w : 0.041 (95% CI: 0.020-0.070) - Median β_b : 0.0054 (95% CI: 0.0011-0.0105) - ⇒ The median within-pack transmission was approximately 8 times higher than the median between pack transmission, consistent with behavioral studies - \Rightarrow The mean R_0 was 2.5 (sd: 2.05), in agreement with previous estimates for the 2003 rabies outbreak