

The spread of rabies in Ethiopian wolves: from field data to transmission parameters

Aurélie Courcoul^{1,2,3}, Elisabeta Vergu⁴, Jean-Baptiste Denis⁴, Claudio Sillero-Zubiri⁵, Louise Matthews², Daniel Haydon²

BACKGROUND

- The Ethiopian wolf: an endangered species threatened by regular outbreaks of rabies
- In 2008 2009: nearly half of the animals of the Web Valley died from rabies
- · Quantification of the spread of infection: an important step towards effective control planning
- · Epidemic process: only partially observed making parameter inference hard
- Is Approximate Bayesian Computation a method of interest?

OBJECTIVE

To assess rabies transmission in Ethiopian wolves during the 2008-2009 outbreak using Approximate Bayesian Computation (ABC)

A few words about ABC

- · Bypass exact likelihood calculations by matching simulated to observed data
- The simplest ABC framework: rejection samplers (Figure 1)

· Here: minimally informative priors for β_w and β_h . Summary statistics: number of carcasses per group of packs, duration of outbreak, and time between the first carcass and the first carcass in a neighboring pack. 80,000 simulations, the 100 leading to the smallest distance between observed and simulated summary statistics kept for inference. Algorithm of Beaumont

et al. (2002) based on Figure 1: schematic representation of ABC rejection for local linear regression. one parameter

CONCLUSION

- ABC seems a useful method to assess infection transmission parameters in wildlife where data are scarce
- Besides biological insights following the estimation of rabies transmission parameters in Ethiopian wolves, these outputs will be used to calibrate a simulation model to assess the effectiveness of different vaccination strategies in those populations

DATA & METHODS

Field data

- pre and post-outbreak pack compositions, date and place of vaccination events and carcass recoveries
- ⇒ 72 wolves in 7 packs, 35 carcass recoveries over a 5-month period, 13 animals vaccinated

Modelling

- spatially explicit stochastic SEIR model for infection spread within a metapopulation of 7
- inclusion of natural mortality, vaccination and uncertainty about home packs of carcasses
- mean incubation and infectious period fixed to respectively 22 days and 3 days
- \Rightarrow Two parameters to infer using ABC: the within (β_w) and between neighboring pack (β_h) transmission rates. Then computation of the basic reproduction number (R_0) of the infection
- \Rightarrow Before inferring β_w and β_h from the real data set, check on the method accuracy and robustness using simulated data from known parameter values

RESULTS

Check on the method accuracy and robustness

 \Rightarrow good inference for β_w and β_b (Figure 2). The data set was generated with $\beta_w = 0.04$ and $\beta_b = 0.008$.

Figure 2: posterior distributions of β_w and β_b obtained with the ABC procedure (see 'A few words about ABC' for details). The blue stars represents the real parameter values. Priors distributions were uniforms between 0 and 0.1 for β_w and between 0 and $\beta_w/2$ for β_h .

Assessment of rabies transmission during the 2008-2009 outbreak

- Median β_w : 0.041 (95% CI: 0.020-0.070)
- Median β_b : 0.0054 (95% CI: 0.0011-0.0105)
- ⇒ The median within-pack transmission was approximately 8 times higher than the median between pack transmission, consistent with behavioral studies
- \Rightarrow The mean R_0 was 2.5 (sd: 2.05), in agreement with previous estimates for the 2003 rabies outbreak

